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ABSTRACT

One of the most common operations on graph databases is
graph pattern matching (e.g., graph isomorphism and more
general types of “subgraph pattern matching”). In fact, in
some graph query languages every single query is expressed
as a graph matching operation. Consequently, there has
been a significant amount of research effort in optimizing
graph matching operations in graph database systems. As
graph databases have scaled in recent years, so too has recent
work on scaling graph matching operations. However, the
performance of recent proposals for scaling graph pattern
matching is limited by the presence of high-degree nodes.
These high-degree nodes result in an explosion of intermedi-
ate result sizes during query execution, and therefore signifi-
cant performance bottlenecks. In this paper we present a de-
densification technique that losslessly compresses the neigh-
borhood around high-degree nodes. Furthermore, we intro-
duce a query processing technique that enables direct op-
eration of graph query processing operations over the com-
pressed data, without ever having to decompress the data.
For pattern matching operations, we show how this tech-
nique can be implemented as a layer above existing graph
database systems, so that the end-user can benefit from this
technique without requiring modifications to the core graph
database engine code. Our technique reduces the size of
the intermediate result sets during query processing, and
thereby improves query performance.

1. INTRODUCTION

Efficiently querying real-world graphs continues to be an
important challenge for modern database systems — even
those systems designed specifically for graph data. As the
size of the graph increases, so too does the challenge of
querying it at high performance. The problem of scaling
queries over graphs is fundamentally harder than scaling
queries over relational data. Relational data is set-oriented,
and therefore many query operations can be parallelized in
a straightforward way to work over partitions of the set
of records rather than the entire set at once. Different
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cores, or even different servers, can therefore process the
query over a partition of the data independently from each
other, allowing for linear scaling of query operations as more
cores/servers are added.

In contrast, graph query operations are fundamentally less
partitionable. A big reason for this is that most real-world
graphs follow a power-law [1,2] or a heavy-tailed law [3],
which yield a handful of nodes in the graph that are con-
nected (via an edge) to an extraordinarily large number of
other nodes. An example of this phenomenon occurs on
Twitter, where 10% of Twitter accounts follow the same
five users’. The graph is thus very “dense” in areas around
these “high degree” nodes, and query processing operations
involving high-degree nodes are extremely skewed, taking
far more time than equivalent operations on “low degree”
nodes. This makes parallelization of query operators over
different partitions of nodes extremely complicated, and in
some cases impossible. The problem only gets worse as the
graph grows: the degree of such nodes increases linearly or
super-linearly with respect to the increase in graph size, and
new nodes become high-degree. This is a consequence of the
scale invariance property of real graphs [1,2].

Pattern matching is a common (perhaps the most com-
mon) graph query operation. For example, original versions
of SPARQL exclusively supported pattern matching queries.
For a graph, G, such operations retrieve all subgraphs ¢g; € G
conforming to a graph pattern expressed via a query g;.

Although there exist an increasingly large variety of tech-
niques for storing graphs and processing graph matching
queries (see Section 5), a large fraction of them store graph
edges in two or three-column tables in relational database
systems, and process pattern matching queries via self-joins
of this edge table. In particular, they perform one self-join
operation per edge intersection in ¢;, successively finding
larger and larger matching subgraphs by joining the set of
all edges in G with intermediate subgraphs produced by pre-
vious steps in query processing. High-degree nodes are par-
ticularly problematic for these types of joins because they
produce an elevated number of intermediate results when
computing the join sets. Unfortunately, pattern matching
queries encounter high-degree nodes very frequently because
these nodes are: (i) often explicit in the query due to their
centrality, and (ii) often implicit in the variables since the
low-degree nodes are usually connected to many of them.

Many graph database systems rely heavily on indexing
techniques to facilitate join operations [4,5]. Unfortunately,
indexing is not effective enough to counteract the power-
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law, as it only helps when a highly selective predicate can
be applied to the edges of a graph to reduce the effective
degree of high-degree nodes. When edges are unlabeled,
or effectively uniform (e.g., the follow edges on Twitter),
indexes are unable to reduce the intermediate result sizes of
patterns involving high-degree nodes.

One solution to improving the performance of particular
types of graph operations, as proposed by both the data
mining and theoretical computer science communities, is to
reduce the size of the original graph G by turning it into a
smaller graph G [6-10]. These approaches propose a reduc-
tion in the number of (less useful) edges while maintaining
certain structural properties of the graph. This improves
the performance of various graph operations, such as the
bounded approximation of the laplacian matrix [9] or the
bounded approximation of graph isomorphisms [7]. How-
ever, removing edges in this way is a lossy compression that
is unsuitable for graph database systems that are designed
for users who demand exact answers to their graph queries.

In this paper, we present a lossless compression technique,
called dedensification, that changes the structure of the (di-
rected or undirected) graph in order to reduce the number
of adjacencies of high-degree nodes. The main intuition be-
hind our work is that there is a large amount of informa-
tion redundancy surrounding high-degree nodes that can be
synthesized and eliminated. In particular, clusters of low-
degree nodes can be found in the data set that are connected
to the same group of high-degree nodes (e.g., in a social net-
work, people who like rock music tend to follow a highly
overlapping group of popular rock stars). To this end, we
introduce special nodes in the graph, that we call compres-
sor nodes, representing common connections of clusters of
related nodes to high-degree nodes. Many redundant edges
can, in this way, be removed from G.

Our dedensifcation technique is similar to the virtual node
compression technique from the Web search community [11].
However, our goal in this paper is not to maximize compres-
sion — rather it is to accelerate query processing. There-
fore we introduce a technique that constrains the formation
of compressor nodes in order to provide global guarantees
about the structure of the compressed graph. We use these
guarantees to create query processing algorithms that en-
able direct querying of the compressed (dedensified) graph,
and that leverage these guarantees to accelerate query pro-
cessing. Unlike the approximate querying approaches men-
tioned above, our solution enables processing pattern match-
ing queries in an exact way — returning the same results as
queries over the original graph. Since the size of the whole
graph is reduced and the intermediate results produced by
edge-joins through high-degree nodes decrease, the perfor-
mance of many types of graph pattern matching queries im-
proves. Furthermore, the technique flattens the peaks in
node degree distribution, which leads to a sub-linear increase
of peak node degrees as the size of the graph increases. This
facilitates scalable query processing over large graphs.

Dedensification and indexing are complementary tech-
niques to improving pattern matching query performance
over graphs. They can be used independently or together to
further improve performance. However, while indexing im-
proves query performance at the cost of increasing the space
utilized by the database, dedensification almost always re-
duces the size of a dataset. Thus, dedensification does not
suffer from the space-time trade-off of indexing.

2. DEDENSIFICATION

In this section we introduce the concept of dedensifica-
tion. We parameterize our algorithms via a threshold, T,
that indicates the minimum number of adjacencies that a
node should have for it be considered “high degree”. Deden-
sification can be applied to both undirected and directed
graphs. In the second case, the dedensification can be per-
formed on both incoming and outgoing edges of the graph.

Many real-world graphs, especially those in the social
network domain, have more density problems for incoming
edges than outgoing edges. Therefore, in the following, we
focus, without losing generality, on directed labeled graphs
G = (N, E) (N is the set of nodes and F is the set of edges).
The nodes in N are labeled with a unique identifier, while
the labels of the edges in E do not have to be unique (this
type of labeling is the most common way to represent graph
databases such as RDF graphs). A node is high-degree if it
has at least 7 incoming edges sharing the same label. The
same node can be high-degree with respect to one edge label
and low-degree with respect to a different edge label.

Although our techniques generalize easily to graphs with
many different edge labels (this is described in more detail
below), for ease of explanation, we will first consider the
scenario where the data graph and the query graphs have
only one edge label (e.g., the “follows” label in the Twit-
ter graph). This is semantically equivalent to an unlabeled
graph, and makes query processing more challenging since
this prevents filters on edge labels.

Given 7, we consider a bi-partition over the N nodes into
two sets, N and N;, representing the high-degree and the
low-degree nodes, respectively. We call this graph G-.

In many graphs — especially those that follow the power
law mentioned above — nodes in the graph are typically con-
nected to many high-degree nodes. It is often the case that
clusters of related nodes are connected to the same group
of high-degree nodes (i.e., they follow a preferential attach-
ment [1]). We leverage this by repurposing the virtual node
technique from the Web search community [11], and adding
compressor nodes that summarize multiple connections of
the same kind to high-degree nodes. In other words, rather
than allowing the space around a node to be densely filled
with incoming edges from all over the graph, we decouple
high-degree nodes from their incoming connections by means
of intermediate nodes that summarize multiple connections
at once. We call this process “dedensification”.

@ high-degree node

O low-degree node (O compressor node

(a) Original graph (b) Dedensified graph

Figure 1: The dedensification operation.

For example, in the graph shown in Figure 1(a), six low-
degree nodes are shown in white and three high-degree nodes
are shown in red. Note that the low-degree nodes have out-
going edges to this same set of three high-degree nodes.
Therefore, we can say that there exists a general “type of
node” that has outgoing edges to this particular set of three



high-degree nodes. We indicate that this “type of node” ex-
ists by creating a new node (shown in yellow on Figure 1(b))
that has outgoing edges to this set of three high-degree
nodes. Then, we remove the edges that connect the white
nodes to this set of high-degree nodes, and instead create a
single edge from each white node to the new yellow node.

This new yellow node is called a “compressor node” be-
cause it has the potential to reduce the total number of edges
in the graph. In particular, every node that can be classified
into the “type of node” that the compressor node represents
will have three edges removed, and replaced with a single
edge that connects it to the compressor node. Thus, if there
are 1000 nodes in the graph that connect to this particu-
lar set of three high-degree nodes, the compressor node will
cause the 3000 edges incoming to these three high-degree
nodes to be deleted and replaced with 1000 edges incom-
ing to it. In addition to reducing the total number of edges
in the graph, it has the additional benefit of reducing the
congestion around the high-degree nodes.

The compressor nodes that we add to a graph are placed
in a new set, N.. (The original graph has N. = ().) For
simplicity, we indicate the graph as a four-tuple G, =
(Nh, Ni, N, E). We represent the graph with G if N. # 0.

Unlike the virtual node technique cited above, our focus
in this paper is on accelerating query performance and not
optimizing for compression. Therefore, we place constraints
on how and when dedensification occurs, so that the query
executer is able to leverage these constraints in order to
reduce the scope of compressor handling during query pro-
cessing. In particular, the dedensification (i.e. Algorithm 1)
only creates a new compressor node if CONSTRAINT 1 holds
on a set of high-degree nodes H and other nodes M:

CONSTRAINT 1 (DEDENSIFICATION PRE-CONDITION).
Given two input sets of nodes M and H, every node n; € M
has a directed edge to each node of H (i.e., ¥ n; € M and
V h € H we have that (n;,h) € E).

Therefore, for the graph G, of Figure 1(a), if the white
nodes comprise M and the red nodes comprise H, the CON-
STRAINT 1 is satisfied since all the white nodes are connected
to each of the red nodes.

This enables the dedensification to transform the input
graph to the graph shown in Figure 1(b), with the new
compressor node added (in yellow) that decouples the mul-
tiple connections of the white nodes to the common sub-
set of high-degree nodes, as described above. Although in
our example, the white nodes comprising M consist only of
low-degree nodes, note that in general M may also contain
high-degree nodes since high-degree nodes may have outgo-
ing edges to other high-degree nodes. However, even in the
cases where M and H overlap, CONSTRAINT 1 is still valid
and the compression technique works in the same way?.

The dedensification algorithm computes an edge-cut that
bi-partitions the graph by shielding all outgoing connections
to high-degree nodes with compressor nodes. The pseudo-
code is shown in Algorithm 1. The loop in lines 4-11 chooses
for how to find node sets H and M (i.e. a clustering on the
high-degree nodes), while the loop in lines 12-19 computes
the actual dedensification over H and M.

For example, consider the graph G3 in Figure 2(a), which
has three high-degree nodes depicted in red and six low-

2From now on we consider the terms dedensification and
compression equivalent.

Algorithm 1: Dedensification of a graph.
Input : A graph database G, = (N, N, 0, E).
Output: A dedensified graph database G~.
W < 0; // an auxiliary map for CONSTRAINT 1
N, «+ 0;
E' + E;
foreach n; € (N, U N;) do
H < select the outgoing high-degree nodes of n;;
if H # () then
M < W.get(H);
if M = () then
| W WU(H, {n:});
10 else
11 | M+ MU{n;};

© OO0 A WN

12 foreach < H;, M; > in W do

13 ne < newNode ();

14 foreach n; € M; do

15 E' « E'"\{(ni,h)} : h € H;;
16 E + E'U{(ni,nc)};

17 foreach h € H; do

18 | E' « E'U{(ne,h)};

19 | Ne<¢ NeU{nc};

20 return G, = (Nn, Ni, N, E');

(¢) Non-expansive G3

(a) A graph G3

Figure 2: Dedensification of graphs.

degree nodes in white, all connected via the same type of
edge p.

The result of the dedensification is in Figure 2(b). In
this case, the algorithm finds three groups of high-degree
nodes sharing the same incoming connections, namely {A,
B}, {B, C} and {A, B, C}. They create three corresponding
compressor nodes (in yellow). The outgoing nodes of the
white nodes change accordingly. Note that after running
Algorithm 1, every node has at most one outgoing edge to a
compressor node, and every high-degree node has incoming
edges coming only from compressor nodes.

We remark that the dedensification is a lossless compres-
sion of the graph since we can reconstruct the initial graph
G from G just by iterating on each compressor n. € N, and
connecting each incoming node to m. to all the outgoing
nodes of n.. Then, we empty N..

Non-expansive Dedensification. The dedensification in
Algorithm 1 does not necessarily reduce the number of edges
in the graph. This happens when the number of compressor
nodes is extremely high due to a poor tuning of 7. Consider,
for example, the non-compressed graph of Figure 2(a), which
has fifteen edges and nine nodes (three of them are high-
degree nodes with 7 equal to three). The dedensification



of such a graph results in a graph with no space gain since
the number of edges is unchanged and the number of nodes
increases by three (see Figure 2(b)). To avoid this problem,
it is possible to perform a dedensification only if the number
of removed edges is higher than the number of created edges
(i.e. we have a space gain). Figure 2(c) shows a graph of
Figure 2(a) dedensified with this non-expansive strategy.

Due to space constraints, we do not discuss this strategy
further in this paper. However, in order to get the non-
expansive strategy to work, slight modifications are neces-
sary to the query algorithms presented in the next section.
Nonetheless, we found these modifications caused only small
differences in query performance, and we focus on the sim-
pler version of the algorithms in this paper.
Dedensification of multi-edge graphs. Dedensification
works with multi-edge graphs by considering a node high-
degree if it has at least 7 incoming edges sharing the same
edge label. In this case, the created compressor nodes are
associated to a specific given edge label.

3. GRAPH PATTERN MATCHING

In this Section we describe how graph pattern matching
queries are processed over compressed graphs. Our solu-
tion is built as an extension of traditional pattern matching
systems, leveraging their existing query execution modules.
Therefore, before describing our mechanisms for perform-
ing pattern matching over compressed graphs, we first dis-
cuss traditional approaches to performing pattern matching
queries over uncompressed graphs with a particular focus on
the parts that our integration will leverage.

In general the process of graph pattern matching involves
finding one or more instances of a query pattern in a graph
dataset. A query pattern is itself a graph — a set of nodes
and edges. These nodes and edges in the query pattern
can either have labels (in which case these same labels must
appear in the graph dataset in order for a match to occur)
or they can be “variables” which means that they can match
with any node (or edge) in the graph dataset.

For example, Figure 3(d) shows a very simple query pat-
tern: a node whose label is 6 that is connected to another
node (which is a variable) via a directed edge (whose label
is also a variable). This query will return all possible values
of ?ve and ?vs that match this pattern — in other words,
all nodes to which node 6 has an outbound edge, along with
the edge labels.

As another example, Figure 3(b) shows a slightly more
complicated query pattern. This query returns all nodes
that are connected to a node labeled A and another one
labeled 6, and a third node that has an unspecified label, as
long as the three edges that connect it to A, 6, and the third
node all have the same label (which is represented using the
same variable name ?vs).

In general, a query pattern can be decomposed into a se-
ries of node-edge-node “triples” — one triple corresponding
to each edge in the query pattern. For example, Figure 3(b)
can be decomposed into three triples: (?vi, ?vs, ?v4), (7v1,
?vs, A), and (?vi, ?vs, 6). The first element of each triple
can be referred to as the “source” of the edge, or alternatively
called the “subject” s. The second element is the “label” of
the edge, or alternatively called the predicate p. The third
element can be referred to as the “destination” of the edge,
or alternatively called the “object” o.

There has been a significant amount of research and pro-
posed algorithms for processing pattern matching queries
in graph database systems, many of which have innova-
tive and varied techniques for query processing (see Sec-
tion 5). Our work is designed to interface with the most
prevalent algorithm that exists in currently available sys-
tems for processing pattern matching queries. This algo-
rithm proceeds as follows: each triple pattern t1,t2,...,tn
of g corresponds to a selection on the graph database G
(i.e. t1(G),t2(Q),...,tn(G)) and each intersection between
two triple patterns corresponds to a join between two in-
termediate sets of triples (e.g., t1(G) > t2(G) if 1 and
to have a node in common). Once all the selections and
joins on shared nodes have been performed, the output of
these operations is the complete answer set to ¢; that is
q(G) =t1(G) ... xt,(G) [4,5,12].

(d) ¢”

(a) A query g over Gs (b) q; (c) ¢’

Figure 3: Query decomposition.

Since joins of this type are commutative, these joins can
be performed in any order. However, the common prac-
tice is to group them together by source node. In other
words, if a node in the query graph has multiple edges
emerging from it, the joins of the triples corresponding
to these edges are done together, sequentially (or concur-
rently if the query processor supports multi-way joins) in
the query plan. This pattern (where a node in the query
graph has multiple edges emerging from it) is called a star.
Query processing thus proceeds by decomposing a query
graph ¢ into star sub-queries ¢', ¢”, . . . , g™, which can range
from simple triple patterns ¢ = {(s,p,0)} to wider stars
g = {(s,p1,01), (8,p2,02),...,(8,Pn,0n)} [13,14]. In other
words, the query processor first joins together all edges
within each star pattern in the query, and only after this
does it join stars with each other.

For example, the graph pattern matching query ¢; in Fig-
ure 3(a) contains two constant nodes (one of them, node A,
is high-degree) and three variable nodes (?v1, ?ve and ?v4),
all connected through the same kind of edge, here expressed
with the variable ?vs. ¢; can be decomposed into the three
stars (¢;, i and ¢;"’) shown in Figure 3(b), Figure 3(c) and
Figure 3(d), respectively.

The optimizer is responsible for finding as good an ex-
ecution plan as possible, which involves selecting a “good”
order for joining the stars in q (e.g., ¢(G) = ¢'(G) ...
¢"™(@)) [5,13]. For example, Figure 4(a) shows a possible
execution plan for ¢; where first ¢’ and ¢” are joined on node
A, and then the resulting partial result is joined with ¢"”’ on
node 6. Alternatively, Figure 4(b) shows another admissi-
ble plan that first joins ¢” and ¢’ on 6 and then joins the
results with ¢’.

All plans for join ordering produce the same final result —
they differ only in the performance and size of intermediate
result sets. The two plans in Figure 4(a) and in Figure 4(b)
for ¢;(G3) produce two answers a; = {v1=3, vo=5, v3=p,
va=A} and ay = {v1=3, vo=5, v3=p, va=B}. Analogously,



the optimizer also has to determine the execution plan for
each star. For example, the star ¢’ of ¢ can be processed
using the execution plan in Figure 4(c).
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Figure 4: Query planning and execution.

Many sophisticated graph query optimizers have been cre-
ated in the context of semi-structured data such as RDF
data [5,13,14]. These optimizers usually choose a plan by
minimizing a metric, via dynamic programming, that esti-
mates the cost of the plan. The estimation makes use of a
graph synopsis that stores statistics about the graph. For
example, RDF-3X keeps track of the number of occurrences
of the unary and binary triple projections [5]. RDF-3X syn-
opses have been then enriched with characteristic sets and
characteristic pairs to keep cardinality information on how
the “type of stars” are connected to each other [13]. In partic-
ular, the characteristic pairs highlight how a decomposition
of the query into star and chain subqueries is beneficial for
query optimization and execution.

Our solution sits as a layer above a traditional database
system supporting pattern-matching. Therefore, it does not
attempt to optimize the ordering of the joins — rather, it
leverages the execution planner of the underlying system to
perform actual query optimization and execution. Rather,
the goal of our solution is to make graph pattern matching
more scalable by reducing the workload of the selection and
join operations. In particular, we enable the optimizer of the
underlying system to directly access the compressed data
without first decompressing it. This is possible since the
compressed data is itself a graph, G. Our solution processes
a query g over G' by rewriting ¢ to a new query pattern g over
the compressed graph G, such that ¢(G) = G(G). Thus the
underlying system does not need to be aware of the original
query or the original graph. It simply needs optimize the
processing ¢ over G.

In the following we show how star queries are modified for
execution over a compressed graph G when dedensification
has been applied. These star queries can then be joined
together using standard techniques in the underlying system
to arrive at the complete query rewrite .

In graphs compressed with dedensification, there are no
direct connections from low-degree nodes to high-degree
nodes. Instead, special compressor nodes are always present
in between low-degree nodes and high-degree nodes. We
leverage this fact to generate the algorithm in Figure 5,
which shows the computation of all types of star joins over
a dedensified graph database. We make use of a flowchart
to explain the algorithm more intuitively, referring to each
block using the letter enclosed within a green circle associ-
ated with that block. The figures embedded in the dashed
line contain queries, whose color notation is the same used
for Figure 1 and Figure 3. These queries are submitted to
the graph database G, represented as a set of edges {(s,0)}.

The algorithm starts by taking as input the graph G
and the query ¢. If the query pattern ¢ contains any ref-

q <+ (HD = {h1,...,hn},
VAR = {8,01,...,Um})
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Figure 5: Star Join for Dedensification.

erences to constant low-degree node labels, the filters as-
sociated with matching these low-degree nodes are trivial,
and are no different between uncompressed and dedensi-
fied graphs. Therefore, we ignore constant low-degree nodes
in our discussion of the algorithm and only focus on the
parts of ¢ involving constant high-degree nodes (the set

= {h1,...,hn}) and “variable nodes” (the set VAR =
{s,v1,...,vm}, where s is the source and v; are the desti-
nations) which could be matched to either low-degree nodes
or high-degree nodes.

For the purposes of the algorithm presented here, all non-
variable edges within a star are uniform (if they are labelled,
they have the same label). Edges with different labels in a
query pattern are matched via different stars. Therefore,
Figure 5 does not include edge-labels.

There are three macro-cases of star queries: (i) stars
formed by only high-degree nodes in their fan-out (the left
branch of Figure 5), (ii) stars formed by a mixed fan-out
of variables and high-degree nodes (the central branch of
Figure 5) and, (iii) stars formed by only variables in their
fan-out (the right branch of Figure 5). Intuitively, all the
cases follow the same algorithmic approach. They initially
compute the portion of each answer formed by high-degree
nodes. Then, the algorithm completes these partial answers



with the remaining parts of the query. In practice, we apply
a “push high-degree nodes down” rule in the query rewrite.
The three cases are explained separately in the following.

High-Degree Nodes Only. When VAR = ) the query con-
tains a fan-out with high-degree nodes only. This is the eas-
iest case to compute because incoming edges to high-degree
nodes only come from compressor nodes. Therefore, we sim-
ply have to search for any compressor node that connect to
the high-degree nodes hi, ..., h, in the query. If there are
no such nodes, the empty set can be immediately returned.
Otherwise all nodes connected to these compressor nodes via
an outgoing edge from itself to the compressor node form
the result set for §(G). This case can be computed with one
query represented in the corresponding block A of Figure 5.
It is equivalent to the input star with an additional com-
pressor variable between the source and the destinations.

For example, in the case of a query ¢1 = (HD =

{A,B}, VAR = {s}) over the graph in Figure 2(b), the al-
gorithm computes block A finding the compressors AB and
ABC that are connected to both A and B. In this case the solu-
tions are the incoming nodes to those compressors, namely
nodes 2, 3, 4 and 5.
Mix of High-Degree and Variable Nodes. When the
query has both variables (i.e. VAR # ) and constant high-
degree nodes (i.e. HD # (), we first search for the partial
stars containing the high-degree nodes that are specified in
the query (i.e. “push high-degree nodes down”), assigning
them to the set y (block B of Figure 5). If y is empty (i.e.,
the condition y = @ holds), we do not need to search further
because the final result set G(G) is empty as well (i.e., G(G) =
¢ in block 0) since there does not exist any stars in G (or
G) having this particular set of input high-degree nodes.

Otherwise, if y is not empty, we compute block C, block
D, block E and block F in sequence to enrich the partial
answers in y. Note that y already contains all possible
sources s of §(G) (and these sources can be both low-degree
and high-degree nodes). The goal of blocks C-F is to refine
y by matching the variable parts of the query. This is com-
plicated by the fact that variables can correspond to both
low-degree and high-degree nodes.

We thus check for variables matching the low-degree and
high-degree nodes separately. To check for matches with
high-degree nodes, we leverage the fact that every node s
that is connected to one or more high-degree nodes has ex-
actly one outgoing edge to a compressor node. Therefore
the same compressor nodes (call them ¢) identified in the
intermediate result set y must be used to connect s to any
high-degree node that a variable will match with. There-
fore, in block C we join the intermediate result set, y, with
the full compressed graph G on the compressor nodes (i.e.
Yy s é), in order to generate a list of edges with the
subjects s in y being the source for these edges, and the des-
tination of these edges are the high-degree nodes that serve
as potential matches for the variables in the query. We label
this intermediate result set x.

Then, in block D, we search for potentially matching low-
degree nodes. Unlike block C where the join is performed
on the compressor nodes, in this case the subject nodes of
y are joined with all edges of the compressed graph G (i.e.
Yo, s G) in order to find all nodes that are directly con-
nected via an edge from the subject nodes of y. These nodes
fall in one of two categories: they are either (1) low-degree
nodes or (2) compressor nodes. (They are guaranteed not

to be high-degree nodes since high-degree nodes only have
incoming edges from compressor nodes.) We therefore filter
out the compressor nodes (i.e. G.o & N.), which leaves the
resulting match set, called z, containing edges from subjects
in y to all low-degree nodes that are potential matches for a
variable in the query.

Block E unions edges in  with the edges in z, and stores
the result back in z. z thus contains edges from the subjects
in y to all nodes that these subjects were directly connected
to in the original (uncompressed) graph and can be used for
matching the variables in the star query.

Finally, in block F, we use z to match all the variables in
the query. We self-join z m—1 times (where m is the number
of variables in the star to match), and join this result with
y (ice. G(G) = Tony,oo iy (y) s 2l 1) 2,

We now explain this case with an example query g2 =
(HD = {A}, VAR = {s,v1}) over the graph in Figure 2(b).
First, block B finds the compressors AB and ABC connected
to A, together with their incoming nodes. y thus has the
partial results (s=2,c=ABC,hi=A), (s=3,c=AB,h;=A) and so
on.

Then, block C computes a query that retrieves the other
high-degree nodes that can match the variables. They are
the destinations of the outgoing edges from AB and ABC. We
save them in z together with their corresponding sources,
e.g.,  contains (s=2,0=C), (s=3,0=B), etc. The subsequent
block D finds edges starting from the source nodes of y and
ending in a low-degree node. In our case we retrieve only
the edge (3, 6) that we save into z. Block E then adds the
edges in z to z. Finally, block F computes a join between y
and z (z is not self-joined with itself since there is only one
non-source variable in this query). For instance the element
of y: (s=3,c=AB,h;=A) joins with several edges in z including
(3, 6) found in block D and (3, B) found in block C. This
indicates that when the source variable is matched with 3,
nodes 6 and B can be matched to variable ?v; from the query.
Variables Nodes Only. When HD = (), the case is equiv-
alent to the previous case (mix of high-degree and variable
nodes) except that there is no filter to perform on the high-
degree constants, so the initial creation of the set y in the
previous case is not done. Block G corresponds to block C
in the previous case in that it finds the high-degree nodes
that are potential matches for object variables in the query.
However, unlike block C which only had to search the com-
pressor nodes found in ¥y, Block G must search the compres-
sor nodes in the entire graph, since there is no initial filter
on high-degree constants in this case. Block H corresponds
to block D and block E from the previous case. It finds all
the low-degree nodes that are potential matches for vari-
ables in the query (i.e. all nodes that have incoming edges
from non-compressor nodes), and then unions the edges with
these low-degree nodes as objects with the edges produced
in block G that have high-degree nodes as objects. Block |
corresponds exactly to Block F, without the join with y. The

algorithm ends, in all the three cases, by outputting G(G).

4. EMPIRICAL EVALUATION

This section presents the results of some experiments we
conducted to test the approach described in this paper.
We want to understand: (i) how the approach compares
to running normal queries over uncompressed graphs, (ii)
the scalability of the approach on real-world graphs and (iii)



whether the approach can complement existing indexing ap-
proaches.

As mentioned in Section 3, although there are many dif-
ferent proposed techniques for storing graphs and processing
pattern matching queries over them, our work is designed
to interface with the most common technique: storing the
graph in tables containing one row for each edge in the graph
(where each row contains attributes corresponding to the
two nodes and the edge label connecting them), and pro-
cessing pattern matching queries via self-joins on this ta-
ble [5,13].

Therefore, we created a graph database system prototype
that stores the datasets in PostgreSQL and we developed a
set of stored procedures written in PL/pgSQL that (i) gener-
ate a compressed graph G, given a graph G and a threshold
7; (ii) implement all the algorithms described in Section 3,
including those for splitting up star queries into subqueries
and joining them together. We delegated query optimization
to the DBMS, which optimizes each individual query com-
ponent issued to the system from our stored procedures.

All the experiments were conducted on a single machine
provided with 2.66GHz Inter Xeon (2 cores) running Linux
RedHat with 4 GB DDR RAM and a 2-disk 1TB striped
RAID array. We conducted cold and warm cache experi-
ments. All the times reported are “end-to-end” query per-
formance and include the outputting of the results. Every
test was executed twice, and we report the average of these
runs.

Dataset Number of nodes | Number of edges
TWITTER 81,306 1,115,532
GOOGLE 875,713 5,105,035
BARABASI 400,000 8,000,000
LIVEJOURNAL 4,847,571 68,993,773

Table 1: Datasets properties.

Our experiments were performed on both real datasets
(taken from the SNAP datasets [15]) and synthetic datasets.
For real datasets we used the social networks TWITTER and
LIVEJOURNAL, and the Web graph GOOGLE. For the syn-
thetic dataset, we used a generator included in JUNG?(Java
Universal Network/Graph Framework) for random Barabasi
power-law graphs. This dataset is known to nicely approxi-
mate directed real-world graphs [1]. The sizes of the datasets
are shown in Table 1.

We compressed the dataset multiple times, using differ-
ent threshold (7) values. Each query on our benchmark was
therefore run over the original uncompressed graph (indi-
cated in the diagrams with “or”), and compared with the
same query run over the dedensified versions of the graph
(indicated with “dd”).

Unfortunately there is no widely agreed upon benchmark
that contains realistic pattern matching queries over graph
data. Existing benchmarks have been heavily criticized as
not being representative of real-word workloads. We do not
aim to solve this problem and create a new benchmark con-
taining real-world queries in this paper. Rather, as noted in
Section 3, recent work by Gubichev et al. on graph pattern
matching in the relational database context has shown that
a good query processing strategy is to decompose a graph

3http://jung.sourceforge‘net/

pattern matching query into stars, and perform all joins nec-
essary to match these stars, and only afterwards join these
stars together [13,14]. Since star queries are the basic build-
ing blocks for all queries — even complex ad-hoc real-world
queries, it suffices to perform a detailed evaluation on these
star queries, and note that the final joining together of the
output of these star queries are equivalent in both the orig-
inal and dedensified approaches.

WIS 2 e

QAT QA2||QA4 QA5 ||QA7 QA8 |QB1 QB2||QB4 QB5(|QB7 QB8] |QC1| QC2|| QC3
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Figure 6: Queries of the benchmark.

Figure 6 shows the star queries we used to evaluate our
algorithms. At a high level, the benchmark is divided into
five classes of queries, three of which — pattern A, pat-
tern B and pattern C' — correspond to three different types
of basic stars: pattern A includes queries with only high-
degree nodes, pattern B includes queries with a mixed fan-
out of variables and high-degree nodes and pattern C' in-
cludes queries with variables only. The source node s of the
stars is a variable in all the queries, so that we cannot di-
rectly exploit an index to return a query result immediately.
We do not include low-degree nodes in our star queries since
they are performed equivalently in the original and deden-
sified systems, and can be matched quickly by the system.
pattern D and pattern E show some interesting compositions
of multiple stars through high degree nodes.

The red nodes in Figure 6 are explicit references to a par-
ticular high-degree node. In order to pick which high-degree
nodes should be used in these queries, we used the following
method: we find the five highest-degree nodes in the graph
and then take the top three most frequent combinations of
these 5 nodes. For example, queries QA4-QA5-QA6 and
QAT-QA8-QA9 include the most frequent combinations of
two and three high-degree nodes, respectively. In this way,
we make sure that our benchmark tests the most challenging
queries over the graph database.

4.1 Results

In this section we evaluate the results obtained using our
graph DBMS prototype. Since we are more focused on query
performance than data compression, in this section we use
large 7 values such that there are around 100 compressor
nodes created per dataset: 7 = 2,500 for TWITTER, T =
5,000 for GOOGLE, 7 = 10,000 for LIVEJOURNAL, and 7 =
7,000 — 28,000 for BARABASI (see Section 4.2 for why we
used multiple 7 values for BARABASI).

We ran two different sets of experiments. The first set
does not use any indexing (indicated in the diagrams with
“ni”), while the second set is representative of popular triple-


http://jung.sourceforge.net/

avg pattern A
30

avg pattern B

T T
or - ni - cold mm—
dd - ni - cold E===
25 - or-ni-warm —
dd - ni - warm E—

T T
or - ni - cold mmm—
dd - ni - cold ===
or - ni - warm —

dd - ni - warm =

12000

10000

avg pattern C
T

avg pattern D

avg pattern E

T T
or - ni - cold
dd - ni - cold
F or-ni-warm

[ or-ni-warm

T T
or - ni - cold mm—
dd - ni - cold E===

dd - ni - warm

T T
or - ni - cold =
dd - ni - cold ===

or - ni - warm E—

dd - ni - warm

or - in - cold ==
20 - dd-in-cold C—2
or - in - warm m—
dd - in - warm Em—

or - in - cold ===
dd -in - cold C— 8000
or - in - warm m— 1
dd - in - warm mm—
6000

time [sec]
G
T
time [sec]
]
8
T
time [sec]

10 - 1 1 4000

5 b 2000

o

twitter  google livejournal

(a) pattern A

twitter  google livejournal

(b) pattern B

or - in - cold
dd - in - cold
or - in - warm
dd - in - warm

twitter  google livejournal

(c) pattern C

500 [~ or-in - cold =2 4 25

dd - in - cold C—2
or - in - warm m—
dd - in - warm mm—

or - in - cold E==m
dd -in - cold C——
or - in - warm m—

400 dd - in - warm =

time [sec]
time [sec]

300

100 4 sk

twitter  google livejournal

(d) pattern D

twitter  google livejournal

(e) pattern E

Figure 7: Average querying performance.

stores and uses exhaustive indexing of all combinations of
attributes (indicated with “in”). The results obtained on
real datasets (i.e. TWITTER, GOOGLE and LIVEJOURNAL)
are presented in Figure 7.

As mentioned above, our benchmark consists of five

classes of queries. Each member of a class are similar with
each other — only differing from each other in the number
of branches from a particular star. Therefore, members of a
class all present similar performance trends. In order to re-
duce complexity of analysis, in this section we present only
a single performance number for each class of query, which
is derived by taking an average of the performance of each
individual member of the class.
Performance without Indexing. We first discuss the
results in Figure 7 where we did not create any indexes on
the data, thereby forcing the DBMS to always access the
data via a sequential scan.

Our implementation separates nodes associated with low
degree nodes, high degree nodes, and compressor nodes.
This distinction and co-location of related nodes allows Post-
greSQL to achieve access locality for those parts of our plan
tree shown in Figure 5 that focuses on low degree nodes, high
degree nodes, and compressor nodes respectively. This ex-
plains why the advantage of densification is usually greater
for the cold cache results than the warm cache results.

The other primary reason why the dedensified algorithms
perform better than performing the query on the original
graph is the reduction of the size of the intermediate results
that are input to the joins required to construct the stars.
For example, consider query A7 on TWITTER which requires
three or more joins for both the dedensified and original
executions. It involves joining edges to three high-degree
nodes: hi, h2, and hs. For the original graph, the first
join on the raw graph produces 2,626 intermediate results.
However, after the final join (with the edges of h1), the result
set drops dramatically to 22 results. In contrast, for the
dedensified graph, the first join between the edges of he and
those of hg results in 4 intermediate results (all of them are
compressor nodes) which are then joined with the hy edges
to yield the same set of 22 final results. This final join is
thus much faster to process.

For the above two reasons, the queries belonging to pattern
A are always faster over the dedensified graphs than over the
original graphs.

On pattern C queries, the dedensified queries do some-
times perform better than the uncompressed queries, but
the difference is small. This is because the intermediate re-
sult sets are only slightly reduced in size for the compressed
pattern C' queries, since the joins generally involve all edges

in the graph. At the scale of the graphs used in this ex-
periment, this advantage is offset by the extra join that the
dedensified queries must perform. However, for increasingly
larger graphs experimented with in Section 4.2, the trade-off
shifts, and the performance of dedensification starts to sep-
arate from the performance of querying the original graph.
The results for pattern B are a hybrid of the results from
pattern A and pattern C. Queries involving more constants
than variables are more similar to pattern A, and queries
involving more variables are more similar to pattern C.
The queries in pattern D and pattern E involve composi-
tion of stars through high degree nodes. These results are
similar to those obtained on pattern A. The execution times
on the GOOGLE dataset are close to zero because they return
an empty result set for several queries.
Performance with Indexing. We now discuss the results
in Figure 7 where the raw data was exhaustively indexed.
Exhaustive indexing is adopted by many pattern-matching
query systems [4,5]. This configuration includes B*-tree
indeXeS on (s’ p) 0)7 (s) 0} p)7 (p7 S’ O)’ (p7 07 5)7 (0) s) p)’
(07 p, 5)7 (S’ 0)> (0’ 5)7 (Sa p)7 (P: 3)7 (p; 0) and (07 P)
Although overall performance is faster when indexes can
be used to accelerate matches to query constants, the rela-
tive performance of the three query schemes are nearly iden-
tical for this set of experiments as for the set of experiments
without indexing. This is because dedensification and in-
dexing are complementary. Indexes help to accelerate the
match of the high-degree constants in the query, and can do
so for both dedensified graphs and original graphs. Our de-
densification algorithms change the structure of the graph,
but do not change the fundamental representation of nodes
and edges. This allows the dedensified graph to be indexed
in the same way as the original graph. However, the dedensi-
fication strategies are able to maintain their advantage over
the uncompressed strategy when indexes are used because
indexes only help for first steps of query processing, and the
main advantage of the dedensification strategies is that they
keep the intermediate result set and join-input sizes small.

4.2 Evaluation with Evolving Graphs

We now present the results of experiments we ran in or-
der to understand how the different pattern-matching tech-
niques scale when the size of the graph increases. The
Barabasi model simulates the evolution of a real-world net-
work [1]. Therefore, we use the Barabasi model to generate
a graph and measure the performance of pattern-matching
queries over this graph at four points during its evolution:
(1) when it has 100,000 nodes and 2,000,000 edges, (2) when
it has 200,000 nodes and 4,000,000 edges, (3) when it has
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Figure 8: Evolving graph on experiments with indexing.

300,000 nodes and 6,000,000 edges, and (4) when it has
400,000 nodes and 8,000,000 edges.

Due to the preferential attachment formation of the
graph [1], the most expensive queries involve the same high-
degree nodes in all the four datasets, which allows us to
compare exactly the same queries over the evolving net-
work. However, as the size of graph changes, the definition
of “high degree” changes along with it. For the first inter-
mediate point in the Barabasi graph, we used 7 = 7,000;
for the second: 7 = 14,000; for the third: 7 = 21,000; for
the fourth: 7 = 28,000. Figure 8 presents the results of our
experiments.

The behavior of queries of pattern A is linear with re-
spect to the growth of the size of the dataset. However, the
slope of the compressed graphs is smaller, with a behavior
nearly-constant (note the log scale). This demonstrates that
the advantages of dedensification for pattern A discussed in
Section 4.1 scales with the graph size.

For Pattern B, the performance are similar for smaller
graphs, but as the size of the graph increases, the advantages
of dedensification yield large improvements in performance.
This is because as the size of the graph increases, the cost of
the joins in the query plan bottlenecks query performance,
and the dedensification strategies keep the size of the input
to these joins much smaller than the original strategy.

For Pattern C, the benefits of dedensification are reduced,
as discussed in previous sections. However, the dedensifica-
tion does scale better than the original strategy (note the
log scale).

4.3 Tuning of Dedensification

Our approach has an input parameter, 7, that is used to
define which nodes are “high-degree” in the graph and con-
sequently which neighborhoods to dedensify. Figure 9 shows
the number of compressor nodes added and edges from the
graph when varying 7, for TWITTER (up to 7 = 2,500)
and GOOGLE (up to 7 = 5,000) datasets. These two
datasets represent the two extremes among the structure
of our datasets: TWITTER is the densest while GOOGLE is
the sparsest. In Figure 9, the compressor nodes added are
on the left-hand y-axis and edges removed on the right-hand
y-axis (both in the log scale).

The number of compressor nodes created by the deden-
sification process is inversely proportional to 7. The com-
pression rate, expressed in terms of difference between the
number of edges in the original graph and in the compressed
graph, follows an heavy-tailed behavior. From our experi-
ments (not shown in this version of the paper), we also wit-
nessed that higher compression rates do not correspond to
better performance. The important effect of dendensifica-
tion is to reduce the density around the densest nodes in
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Figure 9: Compression statistics varying 7.

the graph. Compressing the intermediate nodes yield little
marginal benefit.

S. RELATED WORK

Despite the fact that graph pattern matching is one of the

most studied problems in the graph data management field,
there is little research addressing the issues engendered by
high-degree nodes. Nevertheless, below we outline related
work divided into categories.
Improving graph pattern matching performance via
graph reduction and compression. The impossibility of
reducing the complexity of algorithms for graph query an-
swering (e.g., graph pattern matching) and the limited re-
sources for computing queries over large graphs, has pushed
many researchers to devise alternative solutions for improv-
ing performance. One of them is to reduce the size of the
input by transforming the original graph G into a smaller
graph G [6-9,11]. Fan et al. [7] propose to compute approx-
imate query answering over a reduced portion of the graph,
where the compression ratio and the query are given up-
front. In practice, the portion of the graph that would be
untouched by the query (or a set of them) is pruned a pri-
ori. A similar idea is applied for approximating the results
of several classes of first-order logic queries by accessing a
bounded amount of data [10].

Satuluri et al. modify the graph for an efficient clustering
by reducing the edgeset with a heuristic that retains only
those edges that are likely to be part of the same cluster [8].
Spectral sparsification was proposed by Spielman et al. to
approximate important properties of a weighted undirected
graph G by simply checking them on G in a reduced time
complexity [9]. These approaches are different than our ap-
proach because they are lossy and therefore unsuitable for
graph database systems that are designed for exact query
answering.

Our utilization of compressor nodes is similar to the “vir-
tual node” concept from Buehrer et. al. [11] which was de-
veloped for community detection in web graphs. However,



the Buehrer et. al. technique focuses on compression and
graph processing, but not pattern-matching queries. There-
fore, they extract all meaningful connectivity formations and
optimize for compression instead of query execution. As a
result, they do not distinguish between high-degree and low-
degree nodes, and the query processing technique we intro-
duce in Section 3 cannot be applied over virtual nodes.

Work by Fan et. al. [6] has similar motivation to ours. It
proposes a lossless compression technique and query pattern
matching directly over compressed data. The compression
uses bisimulation equivalence to merge into the same hyper-
node many original nodes, all sharing type and connections.
In this case the queries have to be expressed via bounded
simulation rather than graph isomorphism. These kind of
queries work well on in-memory databases but differ from
queries normally employed by disk-based graph database
systems.

Other main memory approaches compress the graph ad-
jacency matrix for network/link analysis, such as the page
rank algorithm, which are computed through matrix multi-
plications [16-18]. They aim at finding a suitable ordering
of the rows of the matrix in order to create uniform blocks
of 1s and 0s in the matrix, thus allowing a higher-rate of
(bitwise) compression. The WEBGRAPH framework [16] in-
troduces a compression mechanism that relies on the prop-
erties of similarity and locality, which characterize the web
graph. They are able to use only 3 bits per edge in a giant
graph. Chierichetti et al. [17] extend the WEBGRAPH ideas
to social networks by exploiting the link reciprocity property.
SLASHBURN [18] directly exploits the high-degree nodes in
the graph to define the communities of nodes (i.e. adjacent
rows of the matrix). All of this work focuses on improv-
ing particular in-memory graph operations using compres-
sion, but differs from our contributions of using compression
to accelerate pattern matching queries for disk-based graph
database systems.

Improving graph pattern matching performance via
graph indexing. Most database systems rely extensively
on indexing to compute graph pattern queries [4,5,14,19].
(An exception to this style of query processing are in-
memory graph database systems that take advantage of
graph exploration instead of joins such as the TRINITY sys-
tem [20].) RDF-3X [5] and HEXASTORE [4] exploit an ex-
haustive indexing scheme comprising the six clustered per-
mutations of the triples and of their binary and unary pro-
jections. GINDEX [19] indexes frequent sub-graphs, prov-
ing that this helps the execution of complex graph queries.
GSTORE [14] is a SPARQL engine that makes use of a height-
balanced tree index (called VS*-tree) and materialized views
to speed up aggregate and wildcard-based queries. Reacha-
bility indexes have also been proposed for pattern matching:
Cheng et al. [21] use a 2-hop indexing scheme to accelerate
reachability tests that are used for graph pattern matching.

Our approach is complementary to these approaches. The
compressed graphs that we create look like regular graphs to
the underlying system, and can be indexed in the same way
as the raw graphs (as we found in Section 4). Furthermore,
materialized views can be created on these graphs to acceler-
ate reachability and wildcard-based queries. To summarize:
our work does not focus on performing selections on the
dataset faster, but rather on pruning a considerable amount
of intermediate results around nodes involved in multiple
dense connections.

6. CONCLUSION

In this paper, we introduced a dedensification mechanism
for graph databases whose goal is to overcome an important
problem that prevent graph database systems from achiev-
ing scalable query performance: high-degree nodes. Deden-
sification discovers information redundancy in graphs result-
ing from multiple nodes connecting to the same set of high-
degree nodes, and removes this redundancy via the creation
of new “compressor” nodes. Our experiments show that
dedensification improves performance for queries involving
high-degree nodes, sometimes by an order of magnitude.
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